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Acetyl-CoA synthase/CO dehydrogenase (ACS/CODH) is a
bifunctional enzyme enabling acetogenic, methanogenic, and
sulfate-reducing archea and bacteria to grow autotropically on H
and CQ.t The enzyme from the acetogdtoorella thermoacetica
has been the subject of numerous enzynfatidnetic? and
spectroscopfic’ studies. The reaction catalyzed by ACS, conducted
at the so-called A cluster, comprises the formation of acetyl-CoA
from coenzyme A, CO, and a methyl group provided by a
methylated corrinoid protein. The A cluster is stable in an oxidized
state, a reducefi= 3/2 state, and a CO-bound, one-electron reduced
S=1/2 state. This latter A cluster form has been studied extensively
by EPR? Mdssbauef, and ENDOR spectroscopies. It is called
the NiFeC species, because incorporatiod'dfi or 5’Fe as well
as reaction with'*CO all cause nuclear hyperfine broadening of
the corresponding EPR sigrfalwo recent X-ray crystallographic
studies revealed that the A cluster consists of a$ieaunit linked
via a cysteine bridge to a proximal metal that in turn is connected
to a square-planar, distal Ni site via two cysteine bridges (Figure
1). In the Doukov et al. structufethe proximal site contains Cu
and is tetrahedrally coordinated. In the Darnault et al. struétitre,
is occupied by either Ni or Zn, with Ni partially occupying two
distinct sites with approximate square-planar and tetrahedral
geometries. Evidence has been presented supporting both the Cu
and NP1 forms of the A cluster to be catalytically relevant. Thus,

despite these recent advances in ACS research, the nature of the

catalytically active form of the A cluster and the potential catalytic
role of the NiFeC species remain highly controversial. Here we

use published spectroscopic data for the NiFeC species to evaluaté

possible A cluster models within the framework of density
functional theory (DFT) calculations. Comparison of experimental
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Figure 1. Schematic representation of the computational models employed.
M, denotes the proximal Ni and Cu for moddlsand 2, respectively. C
atoms represented W were kept frozen during geometry optimization.

Table 1. Comparison of Key Interatomic Distances (in A) and
Isotropic Hyperfine Parameters Ais, (in MHz) for Models 1 and 2

experimental 1 2
Mp—S 2.28 231 2.39
Nig—S 2.2¢ 2.21 2.21
Nig—N 1.87 1.91 191
Mp—Nig 2.63 2.60 2.84
Aso(®>Fel) —34.2/-32.2 —-21.9 —25.6
Aso(>Fe2) —34.2/-32.A —21.4 —26.4
Aso(>Fe3) +26.8/+27.8 +23.3 +22.5
Aso(®>Fed) +26.8/+27.8 +23.7 +22.5
Aisd(Mp) 24.F (Ni) +17.1 (Ni) —35.8 (Cu)
Aso(13C) 27.% +8.6 —-4.1
Aiso(®™Nig) N/A —2.6 +0.7

a Cu EXAFS studyt® b Ni EXAFS study on phen-treated isolated
subunit!3 ¢ Mossbauer study on isolatedsubunit®® 4 Méssbauer study
on full enzyme®a ¢ ENDOR study on full enzymé.

and calculated hyperfine parameters reveals that the NiFeC species

is associated with the Ni form.

Mossbauer studies by Mgk and co-workers revealed that the
NiFeC species features the [Sq unit in the 2+ oxidation state
and hinted toward the presence ofNP consistent with the large
observed®Ni hyperfine broadening. Thus, two potential models
for the NiFeC species emerge: A [Sg]2t—Ni,"CO—Nis#" model
(2) in which the proximal site is occupied by aNbon that carries
the S = 1/2 spin and a [F45,)>t—Cu,"CO—Nig" model @) in
which it is occupied by a diamagnetic Cion while the spin resides
on the distal Ni atom. To evaluate those two possibilities, DFT
computation® were carried out on A cluster models in which the
[FesSq] cysteinyl residues were replaced by methyl thiolates and
the protein backbone coordinating the distal Ni atom was truncated
as shown in Figure 1. Initial atomic positions were taken from ref
8 and subsequently optimized by DFT energy minimization. To

EXAFS data%1314indicating that structural data alone do not permit
discrimination between the two models. Nuclear hyperfine param-
eters for57Fe, 8INi, and 13CO were therefore computed on the
optimized geometries using the BP86/ZORA appréathand
compared to those obtained from'bauer and ENDOR studi@s.

As for both models the calculatég(°"Fe) couplings are consistent
with experimental data (Table 1), comparison of the computed
Aiso(®Ni) values is of particular interest. In both modédlsand 2

the proximal metal site, occupied by Ni and Cu, respectively,
produces largeA, values, whereas the distal Nsite shows
negligible isotropicNi hyperfine couplings (Table 1). Conse-
guently, while for model agreement with the experimental,(6-

Ni) value is good¢ for model 2 it is poor. Also, the calculated
Aiso(3C) agrees substantially better with the experimental value for
1 than for2.%7

account for the constraints imposed by the protein backbone, the These results are understood in terms of the different electronic

C atomic positions represented ®yin Figure 1 were kept frozen.
Table 1 shows that optimized key interatomic distances for both
modelsl and2 are generally in good agreement with corresponding
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structures ofl and 2. As expected,1 formally consists of a
diamagnetic [Fg5,]%" unit linked to a Ni ion that predominantly
carries theS = 1/2 spin (unpaired spin densigy= +0.428). This

10.1021/ja037893q CCC: $25.00 © 2003 American Chemical Society
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spin is partially delocalized onto the [fS]%" moiety = +0.204),
generating the nonzefdFe hyperfine interactions. The computa-
tions on modeR, however, did not result in a [F8]>t—Cu,"CO—
Nig" cluster. Instead, the [(8,] moiety is formally reduced to the
+1 state while the Niremains oxidized in the 2 state, as
deprotonated amides favor high metal oxidation stiféss results
in spin densities on Cs(= —0.002) and Nj (s = +0.009) being
too small to generate sizable hyperfine splittif§ghe large values
for Aso(®>’Fe) are due to th& = 1/2 spin now being primarily
localized on [FgS,]* and, to a small extent, on Gtf

Together, our results indicate that the NiFeC species is best
described as [R&4]%t—Ni,"CO—Nis?*.1° Further support for this
conclusion is provided by the computed exchange pararidioer
the antiferromagnetic coupling between, ldind the adjacent Fe4;
our value of +120 cm! is in excellent agreement with the
experimentald = 4100 cn1.60.20 Therefore, our results provide
convincing evidence that the NiFeC species contains Ni rather than
Cu at the proximal metal site. Because the NiFeC EPR signal
intensity parallels enzymatic activiy,our computational results
also imply that the catalytically active ACS form contains Ni at
the proximal metal site. Consequently, they do not support the
“paramagnetic” mechanistic propo¥dh which the NiFeC species
is thought to contain Gff and Ni™ ions and to be catalytically
relevant but are in line with the “diamagnetic” reaction mechahism
in which M, is occupied by Ni. In this latter mechanistic proposal,
the NiFeC species is not directly involved; instead, a reduced state
Areqz featuring a Ni° center was proposed to be the key reactive
species. To explore the feasibility of such a Nicenter, we also
performed computations on a [fS]%*—Ni>—Nig" model @).2*
Interestingly, our results indicate that the jBg unit becomes
reduced to thet1 oxidation state while Niis oxidized to Nf.
Because the [R&,] unit is considered to remain in the same
oxidation state during catalysis aftey.f&formation? such a reduced
[FesSy]™ unit is feasible. Thes = 1/2 spins on the [F&,] unit (s
= +0.753) and Nj (s = —0.535) couple antiferromagnetically to
afford an overall diamagnetic cluster, in agreement with experi-
mental dat&® Calculations were also performed on a truncated
model @a) of Aeqz in which the [F@S,] unit was replaced by a
proton. Notably, this model adopts a diamagnetic ground state of
the form Nj°—Nig?", indicating that such a charge distribution
would indeed be conceivable. However, after optimizing the
geometry of this NP—Nig?* moiety and reintroducing the [F®8]
unit, the [F@S,]™—Ni,"™—Nig" description was restored. These
findings indicate that (i) the calculated electronic structure does
not depend on the initial local geometry around thg $ite and
(ii) the [Fe,Sy)2* cluster is more easily reduced than,Niln the
ACS protein, the redox potential of the [fSg]#**" couple is

presumably raised further by the presence of hydrogen bonds to
the cysteinyl ligands. Because our models are based on the closed

conformation of thex subunit presumed to be relevant for thgsA
state? our results indicate that this reactive A cluster form is better
described as [R&] T—Ni,"—Nig?" than as [Fg5) 2" —Ni®—Nig?",
provided that no major structural changes occur upon A cluster
reduction. The presence of Niin the Aq, State would hint toward

a Nig"/Nip*" redox couple instead of piNig>" being involved in
methylation, as proposed for the related enzyme acetyl-CoA
decarboxylase/synthase.
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